&--Thursday, July 12, 2007 ; 8:58 PM
EldwinSchrodinger @ Quantum Teleportation
|
loving you always ♥

Teleportation is the name given by science fiction writers to the feat of making an object or person disintegrate in one place while a perfect replica appears somewhere else. How this is accomplished is usually not explained in detail, but the general idea seems to be that the original object is scanned in such a way as to extract all the information from it, then this information is transmitted to the receiving location and used to construct the replica, not necessarily from the actual material of the original, but perhaps from atoms of the same kinds, arranged in exactly the same pattern as the original. A teleportation machine would be like a fax machine, except that it would work on 3-dimensional objects as well as documents, it would produce an exact copy rather than an approximate facsimile, and it would destroy the original in the process of scanning it. A few science fiction writers consider teleporters that preserve the original, and the plot gets complicated when the original and teleported versions of the same person meet; but the more common kind of teleporter destroys the original, functioning as a super transportation device, not as a perfect replicator of souls and bodies.

Six scientistsIn 1993 an international group of six scientists, including IBM Fellow Charles H. Bennett, confirmed the intuitions of the majority of science fiction writers by showing that perfect teleportation is indeed possible in principle, but only if the original is destroyed. In subsequent years, other scientists have demonstrated teleportation experimentally in a variety of systems, including single photons, coherent light fields, nuclear spins, and trapped ions. Teleportation promises to be quite useful as an information processing primitive, facilitating long range quantum communication (perhaps unltimately leading to a "quantum internet"), and making it much easier to build a working quantum computer. But science fiction fans will be disappointed to learn that no one expects to be able to teleport people or other macroscopic objects in the foreseeable future, for a variety of engineering reasons, even though it would not violate any fundamental law to do so.

In the past, the idea of teleportation was not taken very seriously by scientists, because it was thought to violate the uncertainty principle of quantum mechanics, which forbids any measuring or scanning process from extracting all the information in an atom or other object. According to the uncertainty principle, the more accurately an object is scanned, the more it is disturbed by the scanning process, until one reaches a point where the object's original state has been completely disrupted, still without having extracted enough information to make a perfect replica. This sounds like a solid argument against teleportation: if one cannot extract enough information from an object to make a perfect copy, it would seem that a perfect copy cannot be made. But the six scientists found a way to make an end run around this logic, using a celebrated and paradoxical feature of quantum mechanics known as the Einstein-Podolsky-Rosen effect. In brief, they found a way to scan out part of the information from an object A, which one wishes to teleport, while causing the remaining, unscanned, part of the information to pass, via the Einstein-Podolsky-Rosen effect, into another object C which hasfigure never been in contact with A. Later, by applying to C a treatment depending on the scanned-out information, it is possible to maneuver C into exactly the same state as A was in before it was scanned. A itself is no longer in that state, having been thoroughly disrupted by the scanning, so what has been achieved is teleportation, not replication.

As the figure to the left suggests, the unscanned part of the information is conveyed from A to C by an intermediary object B, which interacts first with C and then with A. What? Can it really be correct to say "first with C and then with A"? Surely, in order to convey something from A to C, the delivery vehicle must visit A before C, not the other way around. But there is a subtle, unscannable kind of information that, unlike any material cargo, and even unlike ordinary information, can indeed be delivered in such a backward fashion. This subtle kind of information, also called "Einstein-Podolsky-Rosen (EPR) correlation" or "entanglement", has been at least partly understood since the 1930s when it was discussed in a famous paper by Albert Einstein, Boris Podolsky, and Nathan Rosen. In the 1960s John Bell showed that a pair of entangled particles, which were once in contact but later move too far apart to interact directly, can exhibit individually random behavior that is too strongly correlated to be explained by classical statistics. Experiments on photons and other particles have repeatedly confirmed these correlations, thereby providing strong evidence for the validity of quantum mechanics, which neatly explains them. Another well-known fact about EPR correlations is that they cannot by themselves deliver a meaningful and controllable message. It was thought that their only usefulness was in proving the validity of quantum mechanics. But now it is known that, through the phenomenon of quantum teleportation, they can deliver exactly that part of the information in an object which is too delicate to be scanned out and delivered by conventional methods.

figureThis figure compares conventional facsimile transmission with quantum teleportation (see above). In conventional facsimile transmission the original is scanned, extracting partial information about it, but remains more or less intact after the scanning process. The scanned information is sent to the receiving station, where it is imprinted on some raw material (eg paper) to produce an approximate copy of the original. By contrast, in quantum teleportation, two objects B and C are first brought into contact and then separated. Object B is taken to the sending station, while object C is taken to the receiving station. At the sending station object B is scanned together with the original object A which one wishes to teleport, yielding some information and totally disrupting the state of A and B. The scanned information is sent to the receiving station, where it is used to select one of several treatments to be applied to object C, thereby putting C into an exact replica of the former state of A.

Labels:



MUSIC ♥


MusicPlaylist
Music Playlist at MixPod.com


TAGBOARD ♥

ABOUT ELDWIN ♥
Welcome to Eldwin Schrodinger's blog. Feel free to drop a message at my shoutout :)

WISHLIST ♥
Honda Civic
Black and white flop flops
Gen 2 ATN Monoculars
Asus eee pc
Oakley shades
Macbook pro 17"
ipod touch 2g
iMac 24" desktop pc
Logitech 5.1 system
1x30 Acog Chevron Scope
20nM Green laser

BIRTHDAYS ♥
::January::
8th - Eldwin,Stephen H.
14th - Nicholas Anthoney
17th - Wei Cheng Heng
21st - Richard D. Winters, Tiffany Chen
24th - LiHuang
26th - Mette Jørgensen

::February::
5th - Jing Song
14th - Michelle Leong, Fang Qing

::March::
3rd - Cheryl Tan(DMIT),Leon Rheeder
8th - Jason Chng
15th - Rina
17th - Lim Jun Yi,Tong ShiHui
22nd - Khazrol
23rd - Peiwen Kwok
25th - Qing Ren

::April::
3rd - Cheryl Cheang

::May::
2nd - Evelyn Chua
8th - Ivy Toh
11th - Richard Feynman
18th - Kellyn Wee
21st - Gwendolyn khong
27th - Mum's Birthday
29th - Milissa Qce
30th - Param Charleston

::June::
4th - Cecilia Kong
9th - Clarence Wong
11th - Rachel Ong
18th - Jaslyn Ng

::July::
3rd - Chelsea Low
11th - Mira
13th - Nadya Wijaja
19th - WanFong

::August::
12th - Erwin Schrodinger
16th - Kieran Lim
23rd - Min Er, Wei Kiat
30th - kristin
31st - ZhengWei

::September::
8th - ManYong
9th - Alexia Ang
21st - Jon Tan,Rayson Choo, Lim Wei Jie(KP)
26th - Prescilla
28th - Nadzirah(SP)

::October::
3rd - Jessie Ho
7th - Neils Bohr, PooSiang
9th - Meryl Cho
14th - Dwight D. Eisenhower
19th - GuanTing

::November::
1st - Pearson Wu
5th - Syikin
6th - Chik Jun Qi
12th - Candy Yeo
14th - Velvet May
23rd - Dad's Birthday

::December::
1st - Estelle
2nd - Michelle Chong
18th - Juyee Ong
21st - Cheryl Lai
23rd - Janice Tan
24th - Catherine,Marshall Lok
26th - Corrine Lau
30th - Alvin Khong
31st - Cecilia knudsen

LINKS ♥
click here for the links :D


PAST ♥
January 2007
February 2007
March 2007
April 2007
May 2007
June 2007
July 2007
August 2007
September 2007
October 2007
November 2007
January 2008
March 2008
April 2008
May 2008
June 2008
July 2008
August 2008
September 2008
October 2008
November 2008
January 2009
February 2009
March 2009
April 2009
May 2009
June 2009
July 2009
August 2009
September 2009
October 2009
November 2009
January 2010
February 2010




CREDITS ♥

Designer: Byiling (:
Basecodes : YY